ROCKVILLE

SPECIFICATIONS

Application: Ultra Slim Subwoofer

Basket Type: Rolled Steel

Cone: Ultra-Stiff Paper Composite

Dust Cap: 3D Molded Acrylic Dust Cap

Surround Style: Laminated Butyl Rubber

Magnet Weight: 3.125 lbs (50 oz)

2" Single 2 Ohm Aluminum Voice Coil

Impedance: 2 ohm

Peak/Program/RMS (CEA): 1200 Watts/600 Watts/300 Watts

Frequency Response: 36Hz - 500Hz

SPL @ 1w/1m: 90dB

TS PARAMETERS

2 0hm

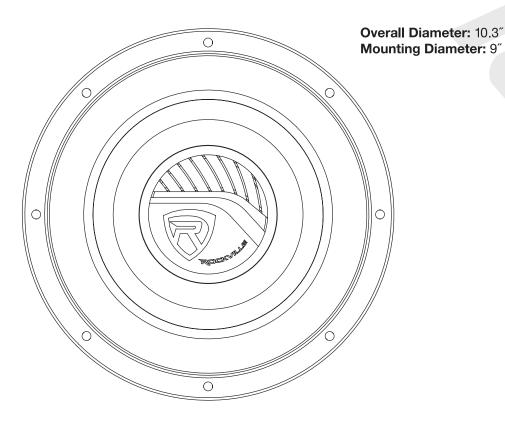
 REVC: 1.6 Ohm
 VAS: 22.944 Ltr

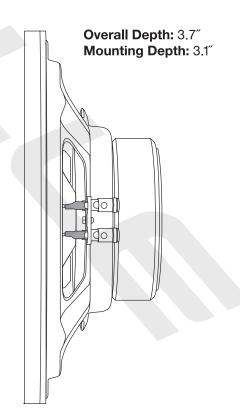
 FO: 47.486 Hz
 CMS: 118.126 uM/N

 SD: 369.840 sqCM
 KRM: 13.527 m Ohm

 BL: 9.109 TM
 ERM: 0.692

NO: 0.434% **EXM:** 0.618


SPLO: 90 dB


RECOMMENDED BOX DIMENSIONS

Sealed enclosure: 0.25 - 0.75 cu ft

Vented Enclosure: 0.75 – 1.00 cu ft @ 35Hz Tuning

0.5 - 1.00 cu ft @ 45Hz Tuning

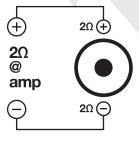
WOOFER WIRING CONFIGURATIONS

Mono Block Amplifier Connections

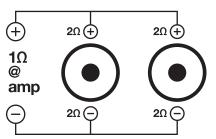
Dual Voice Coil subwoofers have multiple wiring options that are available to you. You can create a final impedance load to match the final impedance load of your amplifier.

1 Ohm Stable

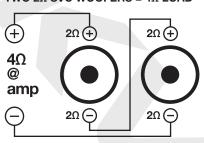
You can run a final impedance load of 1 ohm to take advantage of your amplifiers full power output. If you don't want to run your amplifier as hard and are OK with less power output, you may also run a final impedance load of 2 ohms.

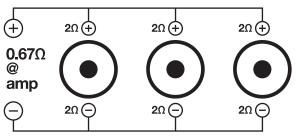

2 Ohm Stable

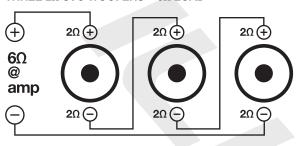
A 2 ohm stable amplifier can run the final impedance at 2 ohms to maximize the power output. The final impedance load can also be 4 ohms which will run your amplifier at cooler temperatures but provide you with less power.


Multi-Channel Amplifier Connections

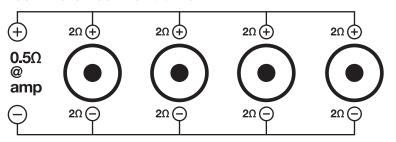
Most multi-channel amplifiers are 2 ohm stable per channel. So, if you run one or two subwoofers to one channel then be sure the final impedance load of the subwoofer(s) is 2 ohms or greater. If you bridge a multi-channel amplifier then it will be a 4 ohm stable minimum, which means you can only run a 4 ohm load or higher to the bridged output. If you run 2 ohm or less to the bridged output then your amplifier will burn out over time.


ONE 2Ω SVC WOOFER = 2Ω LOAD

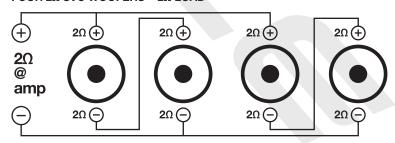

TWO 2Ω SVC WOOFERS = 1Ω LOAD


TWO 2Ω SVC WOOFERS = 4Ω LOAD

THREE 2Ω SVC WOOFERS = 0.67Ω LOAD



THREE 2Ω SVC WOOFERS = 6Ω LOAD


THIS DIAGRAM IS NOT RECOMMENDED FOR ROCKVILLE AMPLIFIERS

FOUR 2Ω SVC WOOFERS = 0.5 Ω LOAD

THIS DIAGRAM IS NOT RECOMMENDED FOR ROCKVILLE AMPLIFIERS

FOUR 2Ω SVC WOOFERS = 2Ω LOAD

